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Abstract. Spatial unit roots can lead to spurious regression results. We present
an overview of the methods developed in Müller and Watson (2024) to test and
correct for spatial unit roots, and introduce a suite of Stata commands (spur)
implementing these techniques. Our commands exactly replicate results in Müller
and Watson (2024) using the same Chetty et al. (2014) data. As a guide for
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1 Introduction: Spatial unit roots

Spatial data present challenges for statistical analysis: observations that are close to
each other geographically tend to be correlated, violating the assumption of indepen-
dent and identically distributed (i.i.d.) errors. In such settings, heteroskedasticity and
autocorrelation consistent (HAC) corrections or clustered standard errors at broader
geographic levels (like states) are often used.

However, these correction methods fail when spatial dependence is too strong (“spa-
tial unit roots”). Even with clustering or HAC corrections, spuriously significant re-
gression coefficients can arise. Müller and Watson (2024) develop new statistical tests
to detect such strong dependence and procedures to correct for it, extending techniques
from time series analysis. We present a Stata implementation of their original Matlab
code, along with practical guidelines for applied researchers.

In the time series context, weak serial correlation in the regressors and regression
errors (the I(0) case) can be dealt with by HAC corrections. However, when the se-
rial correlation is strong (the I(1) case), inference fails and OLS produces “spurious
regressions” (Granger and Newbold 1974). Furthermore, test statistics behave in non-
standard ways (Phillips 1986).

The spatial context is similar (Fingleton 1999), but as Müller and Watson (2022) dis-
cuss, there are also important differences: First, time series operate in a one-dimensional
space, whereas in the spatial context, we are dealing with two (or three) dimensions.
Second, in the time series context, observations are usually equally spaced (... t − 1,
t, t + 1, ...) whereas in the spatial context, the location of observations on a map can
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2 Spatial Unit Roots in Regressions

be substantially different from a uniform distribution on a grid. Third, while there is a
directionality in the time series context (... t − 1, t, t + 1, ...), in the spatial context,
going east is as natural as going west or north or south. Müller and Watson (2022)
propose a method for constructing confidence intervals that account for many forms of
spatial correlation. It uses a projection-type variance estimator, where the projection
weights are spatial correlation principal components (hence called SCPC) from a given
“worst case” benchmark correlation matrix.

Müller and Watson (2022) require stationarity of both regressors and dependent
variables for the large sample validity of their SCPC method. In Müller and Watson
(2023), they present a robust version that can deal with some nonstationarities relevant
to applied research. The methods developed in these two papers have been implemented
in Stata by the authors in their scpc package,1 which provides a postestimation com-
mand to correct regression inference for weak spatial dependence. However, as Müller
and Watson (2024) show, these and other spatial HAC methods cannot deal with the
case of strong spatial auto-correlation in the outcome of interest. Müller and Watson
(2024) introduce diagnostic tests for such spatial unit roots and show how transforma-
tions of the dependent and independent variables eliminate spurious regression results
in the presence of strong spatial dependence.

In this article, we provide a Stata version of the programs developed by Müller and
Watson (2024) to test for and correct for spatial unit roots. These methods can be
used in conjunction with the scpc package to correct regression inference for remaining
weak spatial dependence after spatial unit roots have been corrected, but our package
does not depend on scpc and can be used independently. We show that our routines
replicate the results in Müller and Watson (2024) using data from Chetty et al. (2014).

We also provide practical guidelines for applied researchers dealing with potential
spatial unit roots in regression analysis: how to test for non-stationarity or the presence
of spatial unit roots, and what to do in case non-stationarity is detected, or when the
presence of spatial unit roots cannot be rejected. To illustrate this algorithm and the use
of our Stata commands, we present a simulated example and a Monte Carlo simulation.

The rest of the article proceeds as follows: Section 2 summarizes and illustrates
the tests developed by Müller and Watson (2024) to diagnose spatial unit roots, as
well as our Stata implementation of their Matlab code in the commands spurtest

and spurhalflife. Section 3 explains the spatial differencing techniques they propose
to eliminate unit roots, and presents how they can be applied using the command
spurtransform. Appendix A demonstrates the functionality of our implementation by
replicating results from Müller and Watson (2024). Section 4 presents a brief guide to
using these methods in common settings in applied research, illustrated by an example
application. Section 5 concludes.

1. This is available from https://github.com/ukmueller/SCPC.
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2 Testing for spatial unit roots

This section discusses the approaches to inference about the degree of spatial depen-
dence developed by Müller and Watson (2024). They motivate their analysis of spatial
unit roots by starting from the time series analogue: in time series, the canonical I(1)
process is a Wiener process (also called Brownian motion). Its extension to the (two-
dimensional) spatial case is via a so-called Lévy–Brownian motion. Figure 1 illustrates
the similarity between spurious regressions in the time series context and spatial con-
text: Panel (a) shows realizations of two independent Gaussian random walks, (b) shows
independent simulated spatial unit root processes over n = 722 U.S. commuting zones.
In each case, we report the R2 and t-statistic from the linear regression (with HAC cor-
rection) of the first on the second process, which show spuriously significant correlation
in both cases. Panel (c) shows two variables from Chetty et al. (2014): their outcome
variable (mobility index) and one regressor (teen labor force participation). These re-
semble the unit-root processes in panel (b). This highlights the potential relevance of
strong spatial auto-correlation, which needs to be detected and addressed in empirical
work.

(a): Independent time series unit root processes

R2 = 0.33

t = 3.81

(b): Independent spatial unit root processes

R2 = 0.33

t = 4.05

(c): Data from Chetty et al. (2014)

R2 = 0.44

t = 7.89

Figure 1: Spurious correlations with unit roots

Notes. – This figure is adapted from Figure 1 in Müller and Watson (2024); we thank Ulrich Müller
and Mark Watson for kindly granting us permission for this.
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Specifically, Müller and Watson (2024) develop four diagnostic tests, examining the
following null hypotheses, respectively:

1. H0: Scalar variable y is I(1)

2. H0: Scalar variable y is I(0)

3. H0: Linear regression residuals u are I(1)

4. H0: Linear regression residuals u are I(0)

as well as a method to construct confidence intervals for the spatial half-life of a scalar
variable. All of these tests exploit the different variance-covariance structures implied
respectively by the canonical spatial I(1) and local-to-unity (LTU) models, as defined
by Müller and Watson (2024).

The canonical spatial I(1) model is Lévy-Brownian motion, a spatial generalization
of the Wiener process (Brownian motion) common in time series analysis. This can be
thought of as a continuous-time analogue of a random walk. Conversely, LTU mod-
els describe stationary processes with weak mean reversion governed by a parameter
c > 0. They are a generalization of the pure unit root model, in which the autore-
gressive root approaches unity as the sample size increases, at a rate determined by c.
This allows them to behave very similarly to I(1) processes for small c and very sim-
ilarly to weakly dependent I(0) processes for large c. Thus, they span a continuum of
dependence between the dichotomous I(0) and I(1) cases. Their canonical form is the
Ornstein-Uhlenbeck process, which can be thought of as a continuous-time analogue of
an AR(1) process in the time series context. The variance-covariance structure of these
two canonical models in the spatial case is given by

Canonical I(1) model: yl = L(sl), E[L(s)L(r)] =
1

2
(|s|+ |r| − |s− r|)

Canonical LTU model: yl = Jc(sl), E[Jc(s)Jc(r)] = exp [−c|s− r|] /(2c),

where l indexes locations, s, r denote locations in space, |x| =
√
x′x, L(·) is Lévy-

Brownian motion and Jc(·) is the spatial generalization of the Ornstein-Uhlenbeck pro-
cess with mean-reversion parameter c > 0. These canonical processes provide asymp-
totic approximations for more general models2 (see Theorem 2 in Müller and Watson
2024), and their properties can thus be used to discriminate between I(1) and I(0)
processes.

2.1 Low-frequency weighted averages

The fundamental idea is to compare the performance of these two models in rationalizing
the data. Rather than performing tests on the raw data, Müller and Watson (2024) build

2. “More general” in this case refers to models where the innovations are not necessarily white noise,
but more general stationary processes. In the discrete-time time series context, this is comparable
to the relationship between a random walk as the “canonical” unit root model with white noise
increments to the “more general” ARIMA model with ARMA noise (Müller and Watson 2024).



S. O. Becker, P. D. Boll, and H.-J. Voth 5

on Müller and Watson (2008) and compute the test statistics from a fixed number q
of weighted averages of the data. Specifically, given a data vector y = (y1, . . . , yn)

′,
define ΣL as the n × n covariance matrix of y implied by the canonical I(1) model
(Lévy-Brownian motion L(·)). In other words, ΣL is the theoretical covariance matrix
of the data under the I(1) model. From this, derive R as the n × q matrix whose
columns are the eigenvectors of MΣLM corresponding to the q largest eigenvalues,
whereM = In−1(1′1)−11′ is the demeaning matrix, and scaled such that n−1R′R = Iq.
Then, the weighted averages are computed as

z = R′My = R′y

The j-th (j = 1, . . . , q) weighted average is the linear combination of the data with the
j-th largest population variance under the canonical I(1) model; that is, the scalar zj
is the j-th largest principal component of My based on the assumed covariance matrix
MΣLM. As illustrated below, and discussed in detail in Müller and Watson (2019)
for the time series case, this choice of weights extracts and summarizes low-frequency
variation in the data.

Basing the tests on these weighted averages is useful in two broad ways: First, sum-
marizing the data in a fixed number of averages yields an asymptotically multivariate
(q-dimensional) normal distribution (following from a central limit theorem), which en-
ables the use of standard inference methods. The covariance matrix of this limiting
distribution is simply

Var(z) = R′ΣR ≡ Ω

where Σ is the covariance matrix induced by the data generating process. For the
purposes of this paper, Σ will be the covariance matrix implied by one of the two
canonical models discussed above, which we denote by ΣL for the I(1) model and Σ(c)
for the LTU model with decay parameter c. They imply different covariance structures
Var(z), henceforth denoted as ΩL and Ω(c). This is exploited to discriminate between
broad models of persistence, which reduces to a standard problem of inference about
the covariance matrix under normality.3 Second, choosing the weights to extract only
low-frequency variation makes the resulting tests robust to misspecification of the high-
frequency variation: the accuracy of the approximations derived from the canonical
models in finite samples now does not depend (much) on the ability of those models
to match the high-frequency behavior of the data generating process. See Müller and
Watson (2019) for a more extensive discussion.

Choice of q. An obvious practical question is how to choose the number of weighted
averages q. This requires a trade-off: a large q increases the amount of data used in
the tests, increasing power, but also makes the tests more sensitive to high-frequency
noise in the data. Müller and Watson (2024) argue that a q between 10 and 20 captures
most of the relevant low-frequency variation, and use q = 15 in their applications. Our

3. As discussed before, these canonical processes asymptotically approximate more general DGPs, and
are thus a useful benchmark for inference (see Theorem 2 and Section 4.6 in Müller and Watson
2024).
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numerical simulations show that the q = 10 (q = 15) [q = 20] largest eigenvectors
capture ca. 85% (87%) [90%] of the variation in simulated LBM processes, respectively,
while q = 30 (q = 50) only increases this share slightly to 92% (94%). In our Stata
package, all test commands include the option , q(). We set q(15) as the default, and
also recommend that users test the robustness of their results to different choices of q.

Illustration of weighted averages. We illustrate the construction of the weighted av-
erages in a simple example. We randomly draw n = 3000 locations from a uniform
distribution on the unit square, with coordinates sl, l = 1, . . . , n. The covariance ma-
trix induced by Lévy-Brownian motion for these locations is then given by ΣL, where
the (l, ℓ)-th element is 1

2 (|sl|+ |sℓ| − |sl − sℓ|). From there, it is straightforward to
compute the eigenvectors of MΣLM. The subplots of Figure 2 show the eigenvectors
corresponding to the 1st, 2nd, 3rd, 4th, 10th, 15th, 20th and 50th highest eigenvalues,
respectively, where the color of location l on the map indicates the value of the l-th
element of the respective eigenvector. The “frequency” of the variation clearly increases
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Figure 2: Illustration of the weights

with the order of the eigenvectors. To see how z extracts low-frequency variation from
y, notice that z = R′y = n(R′R)−1R′y, since n−1R′R = Iq by construction. z can
therefore also be understood as coefficients (loadings) from projections of y on the q
largest eigenvectors of MΣLM. Inspecting the behavior of these eigenvectors in Figure
2 makes clear how this captures low-frequency variation.

This is further illustrated by the subplots of Figure 3: The first two subplots show
simulated data for an LBM process, yLBM ∼ N(0,ΣL), and an LTU process with much
lower persistence, yLTU ∼ N(0,Σ(10)), respectively. The difference in low-frequency
variation is clearly visible. The third subplot illustrates how the weighted averages
discussed above can be used for inference about spatial persistence. The black lines
show the absolute values of the elements of zLBM = R′yLBM and zLTU = R′yLTU,
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Figure 3: Simulated data and weighted averages

respectively, where R collects the eigenvectors of MΣLM corresponding to the q =
15 largest eigenvalues (so that j = 1 is the largest eigenvector, j = 2 the second
largest, etc.). The difference in behavior is stark: the LBM process loads heavily on
the first few eigenvectors (low frequencies) and then quickly decays, while the LTU
process loads evenly across the spectrum. This empirical behavior can be compared to
the expected behavior of z under the two models, given by zLBM ∼ N(0,ΩLBM) and
zLTU ∼ N(0,ΩLTU), respectively, where ΩLBM = R′ΣLR and ΩLTU = R′Σ(10)R.
This implies that E[z2j ] = Ωj,j for the respective model, shown by the gray lines. By
construction, ΩLBM describes the behavior of zLBM much better than that of zLTU, and
vice versa. The next sections formalize such comparisons to distinguish between I(1)
and I(0) processes.

2.2 Generic testing procedure

Given the weighted averages z whose limiting distribution is multivariate normal, infer-
ence boils down to testing hypotheses about its covariance matrix Ω. In all tests, the
hypotheses are of the form

H0 : Ω = Ω0 vs. Ha : Ω = Ωa

Müller and Watson (2024) suggest to use the likelihood ratio test statistic of z/
√
z′z

L(Ωa | z)
L(Ω0 | z)

∝ z′Ω−1
0 z

z′Ω−1
a z

≡ Λ

with critical value CV that solves

Pr(Λ > CV | H0) = α

By the Neyman-Pearson lemma, this is the most powerful level α scale invariant test.
In practice, the critical value is computed by

1. drawing Nrep random q × 1 vectors ẑ from the distribution N(0,Ω0),

2. computing the test statistic Λ̂ = ẑ′Ω−1
0 ẑ/ẑ′Ω−1

a ẑ for each draw,
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3. setting CV as the empirical 1− α quantile of the resulting distribution of Λ̂.

The test then rejects H0 if Λ > CV .4 All test commands in our package include the
option , nrep(), which sets the sample size Nrep for the Monte Carlo simulation. The
default is nrep(100000).

2.3 I(1) test

The I(1) test examines the presence of a unit root in a scalar variables y, i.e. the I(1)
model against the LTU model. The hypotheses are therefore

H0 : Ω = ΩL = R′ΣLR vs. Ha : Ω = Ω(ca) = R′Σ(ca)R

where ΣL is the covariance matrix implied by the canonical I(1) model and Σ(ca) is the
covariance matrix implied by the LTU model with mean-reversion parameter ca. The
choice of ca determines the power of the test across the alternative hypothesis space
c > 0. No uniformly most powerful test exists, so Müller and Watson (2024) propose
setting ca such that a level 5% test has 50% power, following King (1987).5 The test
statistic,6 following the discussion in Section 2.2, is

LFUR =
z′Ω−1

L z

z′Ω−1(ca)z

and the test rejects H0 if LFUR is larger than the critical value (computed as described
in Section 2.2).

2.4 I(0) test

Testing the I(0) null hypothesis, i.e. spatial stationarity, is not as straightforward: the
LTU model, as discussed in Section 1, is similar to an I(1) process for small c, and
similar to an I(0) process for large c. Therefore, to specify an I(0) null hypothesis, one
must take a stance on the value of c that separates the two. Müller and Watson (2024)
propose to set this value to c0.03, defined as the value of c such that the average pairwise
correlation induced by Σ(c) is 0.03.7 They then propose the hypotheses

H0 : Ω = Ω(c), c ≥ c0.03 vs. Ha : Ω = Ω(c) + g2aΩL, ga > 0

4. P-values are computed as
∑Nrep

i 1[Λ̂i > Λ]/Nrep

5. In practice, this is achieved through Monte Carlo simulation: For a given set of locations and
some value ca, ΣL and Σ(ca) are known theoretical objects. The critical value for a given level
(here 5%) is computed as described in Section 2.2, and power can be computed in an analogue
fashion, drawing data from the alternative distribution instead of the null distribution. This is
then repeated for different ca values until an approximate solution to Power(ca) = 0.5 is found.

6. Müller and Watson (2024) label the statistic LFUR in reference to the Low Frequency Unit Root
statistic in Müller and Watson (2008). Similarly, the I(0) test statistic is labelled LFST in reference
to their Low Frequency Stationarity test.

7. See Müller and Watson (2024) for details.
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where the alternative hypothesis is a mixture of the I(0) and I(1) models, which gets
closer to the I(1) model as ga increases. ga thus plays the same role as ca for the I(1)
test in controlling the distance between the null and alternative hypotheses, and its
choice determines the power profile of the test for different levels of persistence. Müller
and Watson (2024) propose to set this value analogously to ca by targeting 50% power.
To construct a test statistic in the form of Section 2.2, we need simple hypotheses, which
in turn requires a choice for c: Müller and Watson (2024) suggest that setting c = c0.001
under both H0 and Ha and thus computing the test statistic

LFST =
z′Ω(c0.001)

−1z

z′[Ω(c0.001) + g2aΩL]
−1

z

yields a test that works well for a wide range of c ≥ c0.03. The test rejects H0 if
LFST is larger than the critical value (computed as described in Section 2.2, with the
modification that first the critical value is computed for a range of values c ≥ c0.03, and
then the highest of those values is used to compare to the test statistic).

2.5 I(1) and I(0) tests for regression residuals

In many practical applications, the econometrician wants to test the persistence of the
errors of a regression model yl = x′

lβ + ul. With β unknown and its estimates biased
in the presence of unit roots, ul is unobserved and thus the previous tests cannot be
directly applied. Müller and Watson (2024) propose a simple solution for the case where
u is independent of X, which is to condition on X in the construction of the weighted
averages:

zX = RXy

where RX collects the eigenvectors of MXΣLMX corresponding to the largest q eigen-
values, and MX = In − X(X′X)−1X. Then, the LFUR and LFST statistics can be
computed as before, with zX instead of z.

2.6 The spurtest command

All four tests described in the previous sections are implemented in the Stata command
spurtest, which has four versions for the four different tests.

Syntax

spurtest i1 varname
[
if

] [
in

] [
, q(#) nrep(#) latlong

]
spurtest i0 varname

[
if

] [
in

] [
, q(#) nrep(#) latlong

]
In each case, varname is the numerical variable to be tested for stationarity.

spurtest i1resid depvar
[
indepvars

] [
if

] [
in

] [
, q(#) nrep(#) latlong

]
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spurtest i0resid depvar
[
indepvars

] [
if

] [
in

] [
, q(#) nrep(#) latlong

]
In each case, depvar is the numerical dependent variable, and indepvars are the numer-
ical independent variables of the regression model (a constant is always included).

All our commands require that the variables containing the spatial coordinates are
named s 1, s 2, . . . , s p. This is for consistency with the scpc command developed by
Müller and Watson (2022, 2023), which we use below. If the option latlong is specified,
s 1 is interpreted as latitude and s 2 as longitude, and no other s * variables may be
present. If the option is not specified, the p s * variables present are interpreted as
coordinates in p−dimensional Euclidean space.

Most of the code underlying this and the other commands in our package is written
in Mata. We provide an .mlib library of compiled Mata functions, which is required
to run the commands.8 This is installed automatically when following the installation
instructions in Section 7. Further, this and all other commands in this package rely on
the moremata package (Jann 2005).

Options

q(#) specifies the number of weighted averages to be used in the test. The default is
q(15).

nrep(#) specifies the number of Monte Carlo draws to be used to simulate the distri-
bution of the test statistic. The default is nrep(100000).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and
longitude (stored in s 2) (see above).

Stored results

spurtest stores the following in r():

Scalars
r(teststat) Test statistic (LFUR or LFST)
r(p) P-value of the test
r(ha param) Parameter for alternative hypothesis (ca or ga)

Matrices
r(cv) Critical values at 1%, 5%, and 10% levels

2.7 Confidence sets for spatial half-life and the spurhalflife command

For completeness, we also implement a method proposed in Müller and Watson (2024)
to construct confidence sets for the spatial half-life of a process, that is, the spatial
distance at which the correlation in the process is equal to 1/2. In the local-to-unity
framework, this is directly connected to the parameter c, specifically the half-life h is
equal to ln 2/c. Confidence intervals can then be constructed as the sets of values of

8. The source code for the Mata functions is available at https://github.com/pdavidboll/SPUR.
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h for which the null hypothesis H0 : h0 = h cannot be rejected. The test statistic
suggested by Müller and Watson (2024)

∫ ∆max

0

det
(
Ω(ln 2/h)

)−1/2(
z′Ω(ln 2/h)−1z

)−q/2
dh(

z′Ω(ln 2/h0)−1z
)−q/2

.

compares how well the data fit under H0 to their average fit across a range [0,∆max]
of alternative values of h, where ∆max is the maximum pairwise distance of the sample
locations, with the weighting chosen to be uniform in h. For a given h0, a critical
value CV (h0) for this test statistic can be computed using Monte Carlo simulation as
described in Section 2.2 by drawing from the null distribution z ∼ N(0,Ω(ln 2/h0)) and
computing the 1−α quantile of the resulting distribution. Comparing the test statistic
based on data to this critical value yields a test of H0 : h0 = h. Repeating this for a
grid of values h0 and collecting all values that are not rejected then yields a 100(1−α)%
confidence set for h. For further details we refer the interested reader to Section 4.4 of
Müller and Watson (2024).

Syntax

spurhalflife varname
[
if

] [
in

] [
, q(#) nrep(#) level(#) latlong

normdist
]

varname is the numerical variable whose spatial half-life is of interest.

The variables containing the spatial coordinates must be named s 1, s 2, . . . , s p.
(See explanation in Section 2.6.)

Options

q(#) specifies the number of weighted averages to be used in the test. The default is
q(15).

nrep(#) specifies the number of Monte Carlo draws to be used to simulate the distri-
bution of the test statistic. The default is nrep(100000).

level(#) specifies the desired confidence level in percent. The default is level(95).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and
longitude (stored in s 2) (see above).

normdist specifies that the results are to be returned as fractions of the maximum
pairwise distance in the sample. Otherwise, they are returned in meters (if latlong)
or the units of the original Euclidean coordinates (if not latlong).
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Stored results

spurhalflife stores the following in r():

Scalars
r(ci l) Lower bound of confidence interval
r(ci u) Upper bound of confidence interval
r(max dist) Maximum pairwise distance in the sample

3 Correction through spatial differencing and the
spurtransform command

Having tested for and found evidence of the presence of spatial unit roots, the econo-
metrician needs a way to correct for them in order to be able to estimate regression
coefficients consistently. The standard approach in the time series literature is to take
first differences of the data:

yt = yt−1 + ϵt

∆yt = yt − yt−1 = ϵt

which yields a stationary process that can be used in regressions. The equivalent trans-
formation in the spatial context is not obvious: observations in space cannot be ordered
in the way that a time series can, and they are unevenly spaced, so which value to
subtract from each observation is not clear. Müller and Watson (2024) propose four
possible linear transformations. The last of them they find to be the most powerful
in their simulations. The following presents all four and illustrates their effects using
the simulated LBM from Section 2.1. Throughout, the vectors y = (y1, . . . , yn) and
y∗ = (y∗1 , . . . , y

∗
n) refer to the raw and transformed data vectors, respectively. Further,

H = I−H̃ refers to the respective transformation matrix, such that y∗ = Hy = y−H̃y.

Nearest Neighbor (NN) Differences

One obvious differencing procedure would be

y∗l = yl − yℓ(l)

where sℓ(l) is the location nearest to sl. This is equivalent to

y∗ = HNNy = (In − H̃NN)y

where H̃NN,lj = 1 if j = ℓ(l) and 0 otherwise.

Isotropic Differences

Instead of taking differences only with respect to the nearest neighbor, another option
would be to subtract the mean of all observations in a neighborhood of radius b:

y∗l = yl − ȳl(b)
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where

ȳl(b) =
1

ml(b)

∑
j ̸=l

1[|sl − sj | < b]yj

ml(b) =
∑
j ̸=l

1[|sl − sj | < b]

This is equivalent to

y∗ = HISOy = (In − H̃ISO)y

where H̃ISO,lj = ml(b)
−1

1[|sl − sj | < b]yj for j ̸= l and 0 for j = l.

Clustered demeaning

A third option is to partition the data into K clusters and subtract the mean within
its cluster from each observation (or, equivalently, including cluster fixed effects in
the regressions). These clusters could be based on knowledge of the structure of the
data (e.g., states), or constructed through techniques like k-means clustering. The
transformed data is then

y∗l = yl − ȳk(l)

where

ȳk(l) =
1

mk(l)

∑
j

1[k(j) = k(l)]yj

mk(l) =
∑
j

1[k(j) = k(l)]

and k(l) is the cluster that l belongs to. This is equivalent to

y∗ = HCLy = (In − H̃CL)y

where H̃CL,lj = m−1
k(l)1[k(j) = k(l)]yj .

LBM-GLS transformation

The previous three transformations are ad hoc ways of correcting strong spatial depen-
dence. Following their characterization of spatial unit root processes as approximated
by Lévy-Brownian motion, Müller and Watson (2024) propose a GLS transformation
based on the covariance matrix induced by LBM. Recall that, under LBM, the demeaned
data are distributed as y ∼ N(0,MΣLM). The standard GLS transform is then

y∗ = (MΣLM)
−1/2

y

≡ HLBMGLSy ≡ (In − H̃LBMGLS)y
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where (MΣLM)
−1/2

is the Moore-Penrose inverse of (MΣLM)
1/2

. To see how this
transformation can be described as “spatial differencing”, it is useful to relate this back
to the time series case: It is easy to show that taking first differences of any evenly
spaced time series is exactly equivalent to a (particular) GLS transformation based
on the covariance matrix of a standard random walk. The LBM-GLS transformation
translates this logic to the multidimensional spatial case, using the LBM covariance
matrix. Figure 4 further illustrates the effects of the transformation.

Figure 4 illustrates all four transformations. The single plot at the top is the “raw”
data used for this illustration, which is the simulated LBM process from Figure 3. The
four columns below show the four described transformations, respectively. Within each
column, the top panel illustrates the transformation for one single data point (in red):
the blue dots are the data points whose weighted values are subtracted from the red
point, with a stronger blue indicating a larger weight. In the NN transformation, only
the closest neighbour is subtracted. In the isotropic and cluster transformations, an
unweighted mean of surrounding observations is subtracted. The LBMGLS transforma-
tion subtracts a weighted mean of all surrounding observations, with weights quickly
decaying with distance. The middle panel shows the values which are subtracted from
the raw data (H̃y), and the bottom panel shows the transformed data (Hy).9

Syntax

spurtransform varlist
[
if

] [
in

]
, prefix(string)

[
transformation(string)

radius(#) clustvar(varname) latlong replace separately
]

varlist is the list of variables to be transformed. The transformed variables will be
stored under the original variables names prefixed with prefix. If varlist contains
several variables, they are all transformed using the same matrix H, meaning that only
observations where all specified variables are non-missing will be included. To override
this behavior, specify the option separately.

The variables containing the spatial coordinates must be named s 1, s 2, . . . , s p.
(See explanation in Section 2.6.)

Options

prefix(string) specifies the prefix for the variable names under which the transformed
data will be stored.

transformation(string) specifies the type of transformation. Must be one of nn, iso,

cluster, lbmgls. Defaults to lbmgls.

radius(#) specifies the radius in metres (if latlong), or in the units of the original
coordinates (if not latlong), which is to be used for isotropic differencing (b in the

9. The cluster transformation uses K = 200 clusters constructed through k-means clustering.
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Figure 4: Differencing transformations

notation above). Only allowed with transformation(iso).

clustvar(varname) specifies the variable that is to be used for clustering. Only allowed
with transformation(cluster).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and
longitude (stored in s 2) (see above).

replace allows the command to overwrite variables when storing the transformed data.

separately executes the transformation separately for all variables in varlist . This
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leads to different results if there are missing observations in some variables, because
the default behavior is to construct the H matrix based only on those observations
for which all variables are non-missing.

4 Regression analysis using the Müller-Watson approach

4.1 Proposed procedure

Having outlined the methods presented in Müller and Watson (2024) as well as our
implementation thereof, we now turn to their practical application in regression analyses
of spatial data. We propose a simple algorithm, summarized in Figure 5:

Do we reject I(0)
for the dependent

variable?

Do we reject I(1)
for the dependent

variable?

No unit root;
use standard regression
with SCPC inference

Do we reject I(1)
for the dependent

variable?

Spatial unit root; apply spatial
differencing (all variables)

and SCPC inference

Unclear case, unit root possible;
apply spatial differencing (all
variables) and SCPC inference

No Yes

NoYes

No

Yes

Figure 5: Flow diagram showing how to apply the Müller-Watson approach

We first test whether the dependent variable contains a unit root. To this end, we
examine whether we can reject that it is I(0). If so, we test whether we can reject
that it is I(1). If we cannot reject, a unit root is most likely present, and we need to
apply one of the transformation methods discussed above to remove it. In this case, we
propose to difference both the dependent and the independent variable(s), for ease of
interpretation of the regression coefficients. If we reject I(0) but also I(1), or neither,
the case is indeterminate; it is arguably wise to difference and report results using
transformed variables. If we do not reject the dependent variable being I(0), but we
can reject that it is I(1), we can confidently proceed without differencing. In all cases,
regression inference still needs to take any remaining (weak) spatial correlation into
account; we suggest using the SCPC approach in Müller and Watson (2022, 2023).

Multivariate cases as well as well as instrumental variables can be handled analo-
gously. Since the hypothesized relationship involves x and y, we should proceed with
differencing all independent variables. Also, because IV estimation represents a rescal-
ing of the relationship between y and z via x, we can proceed analogously in this case.10

10. We thank Ulrich Müller and Mark Watson for clarifying this point.
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4.2 Illustration using Stata

To illustrate this procedure and the use of our Stata commands, we simulate two in-
dependent LTU processes x and y with very high persistence (c = 0.01), using 722 US
commuting zone centroids as locations. We take the location data from the replication
package of Müller and Watson (2024), who in turn obtained it from Chetty et al. (2014),
and provide it in a supplementary file example.dta, along with the simulated data.11

This data file also includes further variables from Chetty et al. (2014), which we use in
Appendix A; however, here we only require the latitude and longitude variables s 1 and
s 2 alongside y and x:

. use s_1 s_2 y x using "example.dta", clear

Figure 6 plots the simulated variables using the geoplot command (Jann 2023), the
code for which we omit here for brevity, but is included in the example reg.do file in
the supplementary materials. The shade of each dot indicates the value of the respective
variable at that location. Strong spatial dependence is clearly visible in both variables.

Figure 6: Simulated dependent variable y (left) and independent variable x (right)

Running a simple regression of y on x and applying SCPC inference again illustrates
the issue of spurious regression results in the presence of (near) unit roots: In this case,
there is a strongly significant negative correlation between y and x, even though they
are independent in population:

. qui reg y x, r

. scpc, latlong
found 722 observations / clusters and 2-dimensional locations in s_*
Computing distances on surface of sphere treating s_1 as latitude and
s_2 as longitude
SCPC optimal q = 8 for maximal average pairwise correlation = 0.030

SCPC Inference for first 2 coefficients

11. The Stata code to generate the simulated data is also available in the supplementary materials as
make example data.do.
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| Coef Std_Err t P>|t| 95% Conf Interval
-------------+----------------------------------------------------------------

x | -.4916417 .1246614 -3.94 0.020 -.8813726 -.1019108
_cons | 1.817547 .08275 21.96 0.000 1.558602 2.076492

We now follow the procedure outlined above, by applying the I(0) and I(1) tests to
y using the spurtest command. We can reject that y is I(0) with very high confidence,
and we cannot reject that it is I(1), indicating the presence of a unit root:

. spurtest i0 y, latlong
found 722 observations and 2-dimensional locations in s_*
Computing distances on surface of sphere treating s_1 as latitude and
s_2 as longitude
Spatial I(0) Test Results
---------------------------------------
Test Statistic (LFST) : 3.4638
P-value : 0.0004
---------------------------------------

. spurtest i1 y, latlong
found 722 observations and 2-dimensional locations in s_*
Computing distances on surface of sphere treating s_1 as latitude and
s_2 as longitude
Spatial I(1) Test Results
---------------------------------------
Test Statistic (LFUR) : 4.8015
P-value : 0.5736
---------------------------------------

We therefore use spurtransform to difference both y and x using the LBM-GLS
transformation, which adds the transformed variables h y and h x to the dataset. Figure
7 plots the transformed variables, now showing much less spatial dependence.

. qui spurtransform y x, latlong prefix(h_)

Finally, we run the regression of h y on h x and apply SCPC inference. The coeffi-
cient is now close to zero and not statistically significant, showing that our procedure
correctly diagnosed and corrected the spurious regression problem:

. qui reg h_y h_x, r

. scpc, latlong
found 722 observations / clusters and 2-dimensional locations in s_*
Computing distances on surface of sphere treating s_1 as latitude and
s_2 as longitude
SCPC optimal q = 8 for maximal average pairwise correlation = 0.030

SCPC Inference for first 2 coefficients

| Coef Std_Err t P>|t| 95% Conf Interval
-------------+----------------------------------------------------------------

h_x | .0019491 .0369693 0.05 0.968 -.0955051 .0994032
_cons | -4.09e-11 .0017588 -0.00 0.990 -.0046002 .0046002



S. O. Becker, P. D. Boll, and H.-J. Voth 19

Figure 7: Transformed dependent variable h y (left) and independent variable h x
(right)

4.3 Monte Carlo simulations

We repeat the above exercise 200 times, each time simulating independent x and y
processes as above. We omit the simulation code here for brevity, but provide it
in the supplementary materials as example montecarlo.do. For each repetition, we
draw the dependence parameters cx and cy from a log-normal distribution such that
log(cx) ∼ N(3, 2) and log(cy) ∼ N(3, 2), which yields a range of realistic persistence
levels in this setting. We first estimate the uncorrected regression of y on x with SCPC
inference, then apply our procedure to test for unit roots (with a 5% threshold for sig-
nificance) and, if necessary, difference both variables before re-estimating the regression
with SCPC inference. Figure 8 summarizes the results. The left panel shows the es-
timated coefficients from the uncorrected and corrected regressions, respectively. The
right panel shows the share of repetitions in which the null hypothesis of no effect is
rejected at the 5% level. This shows that the correction substantially reduces the vari-
ance of the estimated coefficients around the true value of zero, and that it reduces the
(false) rejection rate from over 10% to under 5%.
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Figure 8: Simulation results: Estimated coefficients (left) and rejection shares at 5%
level (right)
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5 Conclusions

We present spur, a Stata implementation of newly-developed econometric methods
that help to diagnose and correct spatial unit roots (Müller and Watson 2024) and
discuss their use in regression analysis. How these new methods perform compared to
alternative methods to correct for strong spatial dependence is an open question. In
follow-up work, we plan to apply this approach as well as several alternatives to both
simulated and observational data, examining their power and size properties. This will
clarify when each method is best applied, given a particular setting.
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7 Programs and supplemental material

To install the software files as they existed at the time of publication of this article,
type (NB: SJ template) . net sj 24-3
. net install st0751
. net get st0751 (to install program files, if available) (to install ancillary files, if avail-
able)

The latest version of the programs can be installed using

. net install spur, replace from(https://raw.githubusercontent.com/pdavidboll/spur/main/)

and (optional) example data and do files can be downloaded using

. net get spur, replace from(https://raw.githubusercontent.com/pdavidboll/spur/main/)

Revised and improved versions of the programs may become available in the future at
https://github.com/pdavidboll/SPUR or on our web pages (https://www.sobecker.de
and https://pauldavidboll.com and https://www.jvoth.com).

We provide example do-files and data to replicate the results in Section 4 and Ap-
pendix A. Please refer to the provided readme.txt file for further information.
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A Appendix: Reproducing the Chetty et al. (2014) re-
sults in Müller and Watson (2024)

To demonstrate that our Stata code works as expected, we reproduce Table 1 in Müller
and Watson (2024) which uses data from Chetty et al. (2014). These data are originally
in xlsx format and were obtained from the replication package accompanying Müller
and Watson (2024). We read and clean these data in the script make example data.do

and save the resulting dataset as example.dta. We keep their variable names 1:1.
The key outcome variable is called “am” (absolute mobility) whereas all other variables
are predictors of the potential for absolute mobility, such as “tlfpr”, the teenage labor
force participation rate. “am” and “tlfpr” are the two variables depicted in Figure 1,
panel (c). In what follows, we list the sequence of Stata commands that produces our
Table A.1.

After this, we call the different commands in the Stata SPUR suite: spurtest,
spurhalflife and spurtransform, before finally applying the scpc command made
available by Müller and Watson (2023) on their website. The latter apply the proper
standard errors appropriate in the context of spatial auto-correlation on the (trans-
formed) data.

use "example.dta", clear

// make list of covariates
local myvars "fracblack racseg segpov25 fraccom15 hipc gini incsh1 tsr tsperc hsdrop scind
fracrel crimer fracsm fracdiv fracmar loctr colpc coltui colgrad manshare chimp tlfpr
migirate migorate fracfor"

// loop over variables
foreach var of varlist am `myvars´ {

local label_`var´: variable label `var´

// i1 test
spurtest i1 `var´, latlong

local tab_1_`var´ = `r(p)´

// i0 test
spurtest i0 `var´, latlong

local tab_2_`var´ = `r(p)´

// half-life
spurhalflife `var´, latlong normdist nrep(10000)

local tab_3_`var´ = `r(ci_l)´
local tab_4_`var´ = `r(ci_u)´

// note that "am" (=absolute mobility) is the dependent variable
if "`var´"!="am" {

preserve
// Standardize variables
qui sum am if !missing(am) & !missing(`var´)
qui replace am = (am - `r(mean)´)/`r(sd)´ if !missing(am) & !missing(`var´)
qui sum `var´ if !missing(am) & !missing(`var´)
qui replace `var´ = (`var´ - `r(mean)´)/`r(sd)´ if !missing(am) & !missing(`var´)
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// Naive OLS
reg am `var´, noconstant vce(cluster state)

local tab_5_`var´ = `e(r2)´
matrix res = r(table)
local tab_6_`var´ = res[1,1]
local tab_7_`var´ = res[5,1]
local tab_8_`var´ = res[6,1]

// Residual I(1) test
spurtest i1resid am `var´, latlong

local tab_9_`var´ = `r(p)´

// Residual I()) test (not in table)
spurtest i0resid am `var´, latlong

// LBMGLS transformation
qui spurtransform am `var´, prefix("h_") latlong replace

// OLS on transformed
qui reg h_am h_`var´, noconstant robust

local tab_10_`var´ = `e(r2)´
scpc, latlong

matrix res = e(scpcstats)
local tab_11_`var´ = res[1,1]
local tab_12_`var´ = res[1,5]
local tab_13_`var´ = res[1,6]

restore

} end of "am" if-condition

} // end loop

We follow the exact same ordering of columns as Müller and Watson (2024) to allow
for comparison of results of their original Matlab code and our Stata code. Our results
are shown in Table A.1. Apart from minor differences in the second decimal place, which
are explained by the fact that the methods use simulations based on random numbers,
our code reproduces the results in Müller and Watson (2024) exactly.

Note that in the vast majority of cases, applying the LBM-GLS transformation does
not turn significant results in levels into insignificant ones. While there are occasional
cases like the effect of the manufacturing share or Chinese import growth (significant in
levels, but not after the transformation), where the new 95% confidence interval includes
zero, these are rare. This is true despite the fact that the overwhelming majority of
dependent variables appear to be I(1), exhibiting a strong form of spatial dependence.
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Spatial Persistence Statistics Regression of AMI onto Variable
p-Value of Test Half-life Levels LBM-GLS

β̂[95% CI] p-Value β̂[95% CI]
Variable I(1) I(0) 95% CI R2 Cluster Resid. I(1) R2 C-SCPC
Absolute Mobility Index 0.38 0.00 [ 0.09, ∞] NA NA NA NA NA
Frac. Black Residents 0.11 0.01 [ 0.04, ∞] 0.36 −0.60[−0.74,−0.47] 0.21 0.10 −0.42[−0.70,−0.15]
Racial Segregation 0.01 0.13 [ 0.00, 0.28] 0.14 −0.38[−0.47,−0.29] 0.29 0.18 −0.24[−0.35,−0.12]
Segregation of Poverty 0.28 0.03 [ 0.05, ∞] 0.18 −0.43[−0.56,−0.29] 0.27 0.15 −0.21[−0.36,−0.05]
Frac. ¡ 15 Mins to Work 0.57 0.00 [ 0.14, ∞] 0.48 0.69[ 0.54, 0.85] 0.14 0.15 0.37[ 0.08, 0.65]
Mean Household Income 0.13 0.14 [ 0.02, ∞] 0.00 0.05[−0.10, 0.20] 0.38 0.00 −0.01[−0.26, 0.24]
Gini 0.78 0.00 [ 0.26, ∞] 0.37 −0.60[−0.79,−0.42] 0.24 0.10 −0.22[−0.38,−0.05]
Top 1 Perc. Inc. Share 0.31 0.02 [ 0.07, ∞] 0.04 −0.21[−0.36,−0.06] 0.36 0.02 −0.07[−0.13,−0.00]
Student-Teacher Ratio 0.23 0.13 [ 0.05, ∞] 0.12 −0.35[−0.55,−0.14] 0.45 0.03 −0.17[−0.44, 0.11]
Test Scores (Inc. adjusted) 0.30 0.06 [ 0.07, ∞] 0.34 0.58[ 0.39, 0.76] 0.41 0.30 0.42[ 0.15, 0.69]
High School Dropout 0.09 0.02 [ 0.03, ∞] 0.34 −0.58[−0.75,−0.41] 0.49 0.21 −0.29[−0.56,−0.02]
Social Capital Index 0.72 0.00 [ 0.22, ∞] 0.41 0.64[ 0.46, 0.82] 0.29 0.08 0.28[−0.02, 0.59]
Frac. Religious 0.27 0.04 [ 0.07, ∞] 0.28 0.53[ 0.35, 0.70] 0.26 0.14 0.32[ 0.14, 0.50]
Violent Crime Rate 0.54 0.02 [ 0.14, ∞] 0.21 −0.45[−0.68,−0.23] 0.34 0.04 −0.14[−0.26,−0.03]
Frac. Single Mothers 0.18 0.00 [ 0.05, ∞] 0.59 −0.77[−0.92,−0.62] 0.12 0.52 −0.60[−0.94,−0.26]
Divorce Rate 0.05 0.17 [ 0.02, 3.00] 0.27 −0.52[−0.71,−0.33] 0.50 0.26 −0.37[−0.63,−0.11]
Frac. Married 0.05 0.08 [ 0.01, ∞] 0.31 0.56[ 0.43, 0.68] 0.22 0.31 0.35[ 0.11, 0.59]
Local Tax Rate 0.02 0.24 [ 0.01, 0.42] 0.12 0.35[ 0.21, 0.48] 0.39 0.01 0.07[−0.10, 0.23]
Colleges per Capita 0.23 0.07 [ 0.06, ∞] 0.06 0.24[−0.02, 0.49] 0.27 0.00 0.01[−0.24, 0.26]
College Tuition 0.38 0.00 [ 0.09, ∞] 0.00 −0.02[−0.16, 0.12] 0.28 0.00 0.01[−0.05, 0.08]
Coll. Grad. Rate (Inc. Adjusted) 0.04 0.03 [ 0.00, 3.00] 0.02 0.15[ 0.03, 0.28] 0.35 0.03 0.08[ 0.01, 0.15]
Manufacturing Share 0.20 0.00 [ 0.06, ∞] 0.09 −0.30[−0.47,−0.12] 0.37 0.01 0.07[−0.09, 0.23]
Chinese Import Growth 0.02 0.07 [ 0.02, 0.46] 0.03 −0.17[−0.33,−0.02] 0.38 0.00 0.03[−0.01, 0.06]
Teenage LFP Rate 0.51 0.00 [ 0.12, ∞] 0.44 0.66[ 0.49, 0.83] 0.28 0.04 0.26[−0.06, 0.58]
Migration Inflow 0.29 0.08 [ 0.00, ∞] 0.07 −0.27[−0.42,−0.12] 0.33 0.02 −0.12[−0.27, 0.04]
Migration Outlflow 0.34 0.01 [ 0.07, ∞] 0.03 −0.16[−0.31,−0.02] 0.37 0.01 −0.08[−0.16, 0.01]
Frac. Foreign Born 0.56 0.04 [ 0.17, ∞] 0.00 −0.03[−0.16, 0.10] 0.39 0.02 −0.12[−0.29, 0.06]

Table A.1: Reproducing the Chetty et al. (2014) results in Müller and Watson (2024)
using our Stata commands.
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